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Quantum Error Correction 
Apoorv Indrajit Belgundi 

 

Abstract— This paper is a review of Quantum Error Correction. This paper aims to briefly review quantum error correction theory 
and demonstrate its importance in making usable quantum computers. We illustrate the theory of classical error correction using 
the repetition code and prove that repetition makes the transmission of bits more viable due to the reduced error probability. This 
paper includes the basics of quantum error correction theory: quantum three-bit error correction, Shor’s nine-bit error correction 
and general quantum error correction. 

 

Index Terms— Quantum Error Correction, Three-bit code, Qubit, Shor’s Nine-Bit Code 

——————————      —————————— 

1 INTRODUCTION                                                                     

The desire for faster computation continues to reduce the size 
of individual transistors on modern microprocessors. The 
component size of individual transistors is becoming so small 
that quantum effects will soon begin to dominate over classical 
electronic properties [1], [2]. These quantum mechanical effects 
must be regulated, lest they result in unpredictable and 
unwanted behaviour (errors). We aim to minimize or remove 
such errors with quantum error correction to produce 
computationally powerful quantum computers. 

2 CLASSICAL ERROR CORRECTION AND THE THREE-BIT 

CODE 

In the early days of classical computing, classical computers 
faced numerous errors, such as memory errors and incorrectly 
applied instructions. Today, however, we have various 
solutions for correcting classical errors. Components of 
classical computers have become highly reliable, with a failure 
rate below one error in 1017 operations [4]. Today, we operate 
classical computers as if they are “noiseless”. Errors in 
classical computers can be mitigated by information encoding. 
Information encoding aims to encode a message by appending 
additional (usually redundant [4]) information to the message 
to protect the message against the effects of noise. If a part of 
the information in the encoded message is corrupted, we must 
be able to decode the original message. The simplest example 
of information encoding is the three-bit code. In order to 
protect a bit b, we repeat it three times bbb [3], [4], [5]. 

0 → 000,  1 → 111     (1) 

 
On sending three bits through a potentially noisy channel, three 
bits are output at the receiver’s end, and he has to decode the 
three bits to deduce the value of the original bit. 
 
 

 
Suppose the bit sequence 001 was output from the channel. 
Provided that the probability p of a flip was not too high, it is 
likely that the third bit was flipped [4] and the original bit was 
0. This “majority voting” fails if two or more bits sent through 
the channel are flipped. The probability of the majority value of 
the three bits is different from the original bit b and is given by  

 
3𝑝2(1 − 𝑝) + 𝑝3 < 3𝑝2.     (2) 
 
Note that the repetition code makes the transmission reliable 
only when 𝑝 <  0.5 [3], [4]. If we take the initial error rate p0 to 
be 1/3, the new error rate 𝑝1 < 3𝑝0

2. This means that the three-
bit code has reduced the probability of an error from p to less 
than 3p2. If we wanted the error probability to be more 
negligible, we concatenate the code with itself3; each of the 
three bits is repeated three times, so the code length becomes 9. 
This would give us an error rate of 
 

𝑝2 = 3𝑝1
2(1 − 𝑝1) + 𝑝3 < 3𝑝1

2 < 27𝑝0
4 

 
We observe that as long as the initial error rate is 1/3 (constant), 
we can reduce the error rate to whatever we want [3]. n levels 
of concatenation encode one logical bit into 3n physical bits, but 
the error rate for each logical bit reduces to (3𝑝0 
)2𝑛/3. Therefore, n levels of concatenation increase the number 
of bits exponentially but reduce the error rate double-
exponentially fast [3]. 

3 QUANTUM ERROR CORRECTION 

3.1 STRUCTURE OF THE QUBIT 
 
Unlike the classical bit, the qubit can exist in a superposition of 
states, denoted |0⟩ and|1⟩ [1], [2], [7]. The state of an individual 
qubit |ψ⟩ is given by 
 
|ψ⟩ = α|0⟩ + β|1⟩     (4) 
 
where |0⟩ and |1⟩ are two orthonormal basis states of the qubit 
[1], [2], [7] and |α|2 + |β|2 = 1. Conservation of probability for 
quantum states requires that all operations be reversible; 
therefore, all operations of quantum gates are unitary. Any 
dynamical operation of gate G on an individual qubit is a 
member of the unitary group U(2), which consists of all 2 × 2 
matrices where G† = G−1. Up to a global phase, any operation on 
a qubit can be expressed as a linear combination of the 
generators of SU(2) [2], [8]: 
 
𝐺 = 𝑐𝐼𝑐 + 𝑐𝑥σ𝑥 + 𝑐𝑦σ𝑦 + 𝑐𝑧σ𝑧    (5) 
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where σ𝑥, σ𝑦, and 𝑐𝑧 are the Pauli matrices [1], [2], [3], [7], [8], 
[9], [10], σI is the 2×2 identity matrix, cI is a real number and cx, 
cy, cz are complex numbers. 
Over-rotation is a common cause of quantum errors: a qubit in 
state α|0⟩ + β|1⟩ that is supposed to become α|0⟩ + βeiϕ |1⟩ 
becomes α|0⟩ + βei(ϕ+δ)|1⟩. Even if the error is minimal, the 
computation errors will build up and form a much larger error 
[5]. Moreover, quantum states are intrinsically delicate [5]. 
Looking at them will collapse the superposition. α|0⟩ + β|1⟩ 
turns into either |0⟩ or |1⟩ with probability |α|2 and |β|2 
respectively. 
 
3.2 QUANTUM THREE-BIT ERROR CORRECTION 
 
 
A quantum repetition code 

 |ψ⟩ = |ψ⟩ ⊗ |ψ⟩ ⊗ |ψ⟩     (7) 

does not exist due to the no-cloning theorem [2], [4], [5], [7], [11]. 
It is impossible to perfectly copy an unknown quantum state 
because direct measurements will destroy any quantum 
superposition used for computation. In short, quantum data 
cannot be protected from errors by making multiple copies of 
the quantum state. Therefore, quantum error correction 
protocols must detect and correct errors without determining 
any information regarding the qubit’s state. Let us analyze the 
simplest quantum error-correcting code: the quantum three-bit 
code. Let Alice (by convention) transmit quantum information 
to Bob (by convention) through a channel. The channel must be 
noisy, as it is impossible to construct a ”noise-free” channel. For 
simplicity, we assume that a given qubit has an effect chosen 
randomly between leaving the qubit’s state unchanged 
(probability of 1 − p) and applying a Pauli operator (probability 
<  0.5) [10]. We also assume that the noise acts on each qubit 
independently. Alice wants to transmit a single-qubit state 
α|0⟩+β|1⟩ to Bob. This information will be transmitted through 
a “noisy” channel which randomly causes |0⟩ ↔ |1⟩ errors. 
Alice takes two qubits in the state |0⟩ and encodes every single 
qubit into a joint state of three qubits using C-NOT gates2,4,10. 
Thus, the initial state of the three qubits is α|000⟩+β|100⟩. After 
operating the C-NOT gate from the first qubit to the second, the 
state of the three qubits is α|000⟩ + β|110⟩, and after operating 
the C-NOT gate from the first qubit to the third qubit, the state 
of the three qubits becomes α|000⟩ + β|111⟩. Alice then sends 
the qubits to Bob [2], [10], [11]. Bob receives three qubits that 
the noise might have modified. Their state can be either one of 
those in table I. Bob introduces two qubits of his own (ancilla 
qubits), which are in the state |00⟩. Bob uses ancilla qubits to 
gather information about the noise. Bob uses C-NOT gates from 
the first and second received qubits to the first ancilla qubits 
and then from the first and third received qubits to the second 
ancilla bit, as shown in Fig (2) [10]. The current state of the qubit 
is given in table II. Bob measures the two ancilla qubits in basis 
states {|0⟩ |1⟩}, and this measurement gives him two classical 
bits of information known as the error syndrome [10]. The error 
syndrome helps diagnose errors in the received qubits. Bob can 
react in various ways, as given in table III. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table I: State of 
qubits received 
by Bob 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table II: Total state of qubits along with their probability after 

state probability 

α|000⟩  + 

β|111⟩  
(1 − p)3 

α|100⟩  + 

β|011⟩  
p(1 − p)2 

α|010⟩  + 

β|101⟩  
p(1 − p)2 

α|001⟩  + 

β|110⟩  
p(1 − p)2 

α|110⟩  + 

β|001⟩  
p2(1 − p) 

α|101⟩  + 

β|010⟩  
p2(1 − p) 

α|011⟩  + 

β|100⟩  
p2(1 − p) 

α|111⟩  + 

β|000⟩  
p3 

state probability 

(α|000⟩ + 

β|111⟩)|00⟩ 
(1 − p)3 

(α|100⟩ + 

β|011⟩)|11⟩ 
p(1 − p)2 

(α|010⟩ + 

β|101⟩)|10⟩ 
p(1 − p)2 

(α|001⟩ + 

β|110⟩)|01⟩ 
p(1 − p)2 

(α|110⟩ + 

β|001⟩)|01⟩ 
p2(1 − p) 

(α|101⟩ + 

β|010⟩)|10⟩ 
p2(1 − p) 

(α|011⟩ + 

β|100⟩)|11⟩ 
p2(1 − p) 

(α|111⟩ + 

β|000⟩)|00⟩ 
p3 
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Bob introduces ancilla qubits [10] 
 

01 Apply σx to the third 

qubit 

10 Apply σx to the second 

qubit 

11 Apply σx to the first 

qubit 
 

Table III: Ancilla measurements for a single σx error with the 
3-qubit code. 

 
Suppose that the ancilla measurements are projected to |10⟩. 
From table II, we infer that the state of the qubits must be either 
α|010⟩ + β|101⟩ (probability p(1−p2)) or α|101⟩+β|010⟩ 
(probability p2(1−p))10. It is more likely that the state of the 
qubit is α|010⟩+β|101⟩. Therefore Bob will correct the state by 
applying a Pauli operator σx operator to the second qubit. To 
extract the qubit that Alice sent, Bob applies C-NOT from the 
first qubit to the third, obtaining either (α|0⟩+β|1⟩)|00⟩ or 
(α|1⟩+β|0⟩)|00⟩ [10]. Bob has the same qubit sent by Alice or 
Alice’s qubit operated by σx. The critical point is that the 
correction will succeed whenever either no or only one qubit is 
corrupted by the channel, which is the most likely probability. 

In short, the probability that Bob incorrectly decodes Alice’s 
qubit is O(p2), whereas it would have been O(p) if no error 

correction method had been used. 

 

Fig. 1 Quantum three-bit code [10] 

 

Fig. 2 The binary symmetric channel with cross-over 
probability p6. 

 

4 NINE-BIT ERROR CORRECTING CODE 

 
Peter Shor [12] developed the nine-bit code for quantum error 
correction in 1995. It is similar to the three-bit code. The nine-
bit code can correct a logical qubit from one discrete bit flip, 
discrete phase flip or one of each on any of the nine physical 
qubits. Therefore, it is sufficient to correct any continuous linear 
combination of errors on a single qubit [1]. The basis states for 
the code are, and the circuit to perform the code is given in Fig 
(3) [1], [2]. Correcting X errors is identical to correcting X errors 
in the three-bit code. For each block of qubits, X errors can be 
detected and corrected. This means that we take the majority 
value within each set of three [5]: 

|001⟩ ± |110⟩ → |000⟩ ± |111⟩                (10) 

Although X error correction can correct up to three individual 
bit flips, the nine-bit code is still a single error correcting code 
as it cannot handle multiple errors if they occur in specific 
locations [1], [2].  

 

 

Fig. 3 Circuit code to encode each qubit with Shor’s nine-bit 
code 

 

 

Phase (Z) errors are corrected by evaluating the sign differences 
in the three blocks [1], [5]. We take the majority of the three 
signs5. 

(|.⟩  + |.⟩ )(|.⟩  − |.⟩ )(|.⟩  + |.⟩ ) →  

(|.⟩  + |.⟩ )(|.⟩  + |.⟩ )(|.⟩  + |.⟩ )                (11) 

The circuit required to perform the phase correction for the 
nine-bit code is given in Fig (4). The first six CNOT gates 
compare the signs of blocks one and two of the qubit state, and 
the second set of CNOT gates (4 − 9) compares the signs of 
blocks two and three. Even if a bit flip and a phase flip occur on 
the same qubit, the X and Z correction circuits will correct 
errors as intended. 
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Fig. 4 Circuit for Z error correction in the 9-qubit cod 

5 CORRECTION OF GENERAL ERRORS 

5.1 DIGITIZATION OF NOISE: A COMMON GENERAL ERROR 
 

Any interaction (an arbitrary change) between a set of 
qubits and another system is expressed in the form:  

 

|ϕ⟩|ψ0⟩e → ∑(𝐸𝑖|ϕ⟩)|ψ𝑖⟩𝑒                 (12) 

where each operator Ei is a tensor product of Pauli operators 
acting on the qubits, |ϕ⟩ is the initial state of the qubits, and 
|ψi⟩e are the states of the environment [1], [10], [13]. We express 
general noise and decoherence in terms of Pauli operators σx, 
σy, and σz acting on qubits. We write them as X ≡ σx, Z ≡ σz, and 
Y ≡ −iσy = XZ. To write the tensor products of Pauli matrices 
acting on n qubits, we introduce the notation XuZv where u and 
v are n-bit binary vectors. We know that error correction is a 
process which takes the state Ei|ϕ⟩ to |ϕ⟩. Correction of X 
errors takes XuZv|ϕ⟩ to Zv|ϕ⟩, while correction of Z errors takes 
XuZv|ϕ⟩ to Xu|ϕ⟩. Therefore, correcting the most general 
possible noise is sufficient if we correct only X and Z errors 
(evident by eq (13)). 

 

5.2 CORRECTING GENERAL ERRORS 
 

A general quantum error correcting code will be an 
orthonormal set of n-qubit states, allowing the correction of all 
members of a set S = {Ei} of correctable errors. Correctable errors 
include all errors (X, Y, Z or all combinations of thereof) of 
weight (the number of terms in the tensor product other than 
the identity) up to some maximum w. Such a code is also called 
a w-error correcting code. Let |ϕ⟩L be a state consisting of a 
general superposition of codewords of a quantum error 
correcting code. From equation (12), we get  

∑ (𝐸𝑖|𝜙⟩𝐿)|𝜓𝑖⟩𝑒𝑖 .                  (13) 

We extract the syndrome by attaching an (n − k) qubit ancilla a 
to the system [10], [13] using CNOT and Hadamard operations. 
We store in the ancilla the eigenvalues of a set of 
simultaneously commuting operators (known as stabilizers) 
acting on the noisy state. The quantum codewords are all 
simultaneous quantum eigenstates with eigenvalue 1 of all the 
operators in the stabilizer, so such a process does not affect a 
noise-free state [10], [13]. In a noisy state, we get 

|0⟩ a ∑ (𝐸𝑖|𝜙⟩𝐿)|𝜓𝑖⟩𝑒  𝑖  → ∑ |𝑠𝑖⟩𝑎(𝐸𝑖|𝜙⟩𝐿)|𝜓𝑖⟩𝑒𝑖               (14) 

 
where si are the syndromes ((n − k)-bit binary strings). A 
projective measurement1,10,13 of the ancilla will collapse the 
sum to a single syndrome taken randomly. A measurement of 
|si⟩a(Ei|ϕ⟩L)|ψi⟩e will yield si as a result. As there is only one 
Ei with the syndrome we have measured, we deduce the 
operator Ei−1, which can now be applied to correct the error. 
The resulting state is |si⟩a|ϕ⟩L|ψi⟩e, and we can ignore the 
ancilla and environment without affecting the system. The 
system is finally disentangled and restored to the state |ϕ⟩L.  

To summarize, we force the noisy state to pick among a set 
of discrete errors [10], [13] and then reverse the particular 
discrete error because the measurement result tells us about the 
chosen discrete error. 

6 CONCLUSION 

In this paper, we have seen a detailed and nuanced 
understanding of various forms of error correction: three-bit 
error correction, nine-bit error correction, and general error 
correction. We hope this paper provides a thorough, detailed 
understanding of quantum error correction and is a foundation 
for future error correction endeavours. 
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